

Parallel Query Processing on GPUs using Sub-operators

Master thesis

Artem Kroviakov

Lehrstuhl für Datenbanken

12. November 2024

Motivation

- State-of-the-art CPU databases often hit the bandwidth boundary.
- GPUs offer much higher bandwidth.
- GPUs are ubiquitous in consumer and data center environments.
- AI boom suggests that GPUs are here to stay and will be actively developed, can we ride the GPU wave in databases?
- For analytics, why not sacrifice latency for bandwidth?

GPUs offer higher memory bandwidth and more compute

Hardware intuition behind GPUs

Goal: minimize instruction latency

Goal: maximize instruction throughput

Hardware intuition behind GPUs

Goal: minimize instruction latency

Goal: maximize instruction throughput

Hardware intuition behind GPUs

Goal: minimize instruction latency

Goal: maximize instruction throughput

Last resort \leftarrow Optimization via $SMT \rightarrow$ First step

Quick GPU HW overview

Quick GPU HW overview

SMEM – a fast user-managed memory region (same HW unit as L1)

GPUs in databases

MapD, Omnisci, HeavyDB (mid 2010s):

- LLVM JIT compilation
- Huge code base
- Many physical operators
- Multi-GPU support

TQP (2022):

- Leverage PyTorch tensor runtime
- Low effort
- Ok-ish performance

Crystal, Crystal-opt (2022):

- Hand-written SSB queries
- Vectorization
- Fastest SSB runner on GPUs

GPUs in databases

MapD, Omnisci, HeavyDB (mid 2010s):

- LLVM JIT compilation
- Huge code base
- Many physical operators
- Multi-GPU support

TQP (2022):

- Leverage PyTorch tensor runtime
- Low effort
- Ok-ish performance

Crystal, Crystal-opt (2022):

- Hand-written SSB queries
- Vectorization
- Fastest SSB runner on GPUs

Idea

Approximate Crystal's hand-written performance while preserving HeavyDB's generality by leveraging the existing state-of-the-art query engine.

Step 1: Gain insights from Crystal – CPU vs. GPU

Good bandwidth utilization means that the query time is proportional to the bandwidth limits of devices. For CPUs and GPUs it is an order of magnitude.

Step 1: Crystal - Overview

Fastest GPU runner for simplified (numeric types only) SSB:

- Hand-crafted queries in CUDA C++
- Vectorized execution **int brand[ITEMS_PER_THREAD]; BlockLoad<…, ITEMS_PER_THREAD>(... BlockProbeAndPHT_2<..., ITEMS_PER_THREAD>(...**
- Collision free hash tables, tricky hash functions **int hash = (brand[ITEM] * 7 + (year[ITEM] - 1992)) % ((1998-1992+1) * (5*5*40));**

Parallelism – vector per thread Vector – 4 elements (in registers)

Step 1: Gain insights from Crystal – Compiled vs. Vectorized

Could the GPU's SMT-oriented model be enough to hide latencies like vectorization, even when running "compiled" queries?

Step 1: Gain insights from Crystal – Compiled vs. Vectorized

Could the GPU's SMT-oriented model be enough to hide latencies like vectorization, even when running "compiled" queries?

Not really.

Some queries are up to 30% slower.

Step 1: Gain insights from Crystal - Compiled vs. Vectorized

Compiled vs vectorized:

- Less instructions, but higher instruction latency.
- GPU's SMT is not enough to fully cover latency.
- Higher selectivity negates vectorization benefit.

SSB Q1.1 Scan+Filter+Sum Reduction. Low selectivity.

Step 1: Gain insights from Crystal – Register usage

	Vectorized Compiled	
Q11	26	26
Q21 (probe)	28	19
Q21 (build date)	26	19
Q21 (build partkey)	22	16
Q31 (probe)	32	21

Table 4.1: Register usage for selected kernels/"pipelines".

Register usage – why is it so important?

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel. The limit depends on 3 parameters:

Register usage – why is it so important?

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel. The limit depends on 3 parameters:

SMEM usage A thread-block requires N bytes of SMEM, how many N's can SMEM hold at once?

21 16

Register usage – why is it so important?

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel. The limit depends on 3 parameters:

Register usage – why is it so important?

How to map a batch to GPU?

HeavyDB – each batch is processed by the entire GPU.

- Prefers huge batches, default size is 32M rows.
- Low pressure on the bookkeeping infrastructure.

Crystal – each "batch" is processed by a thread-block.

- Prefers small batches (512 rows in the original Crystal).
- A column is linearly stored in memory, threads "slice" into it.

How to map a batch to GPU?

HeavyDB – each batch is processed by the entire GPU.

- Prefers huge batches, default size is 32M rows.
- Low pressure on the bookkeeping infrastructure.

Crystal – each "batch" is processed by a thread-block.

- Prefers small batches (512 rows).
- A column is linearly stored in memory, threads "slice" into it.

Step 2: More general query processing

Crystal has some simplifications:

- Known cardinalities
- Query-specific collision-free hash functions
- Primitive types for reductions

Almost an unrealistic scenario in databases

+ Technical limitations of GPUs (e.g., a thread stack variable is inaccessible to other threads, except for shuffles which are up to 8B)

To achieve a more general query processing, we need:

- General dynamic data structures
- Suitable results representation for generic merge logic

Step 2: More general query processing

Crystal has some simplifications:

- Known cardinalities
- Query-specific collision-free hash functions
- Primitive types for reductions

Almost an unrealistic scenario in databases +

Technical limitations of GPUs (e.g., a thread stack variable is inaccessible to other threads, except for shuffles which are up to 8B)

To achieve a more general query processing, we need:

- General dynamic data structures
- Suitable results representation for generic merge logic Kernel-local concept

Step 2: More general queries – Kernel local

We must be able to easily access composite thread-local results.

Kernel Local – let each kernel have a global memory allocation big enough to fit results at some locality level.

A different address space (not the same as thread's stack) makes the results accessible by a pointer from any thread.

Locality levels that reflect GPU hierarchy:

- 1. Thread
- 2. Warp (max. 32 Threads)
- 3. Thread Block (max. 32 Warps) CPU morsel-driven

malloc() is regarded as a bad practice for GPUs.

- High latency
- Easily congested

malloc() is regarded as a bad practice for GPUs.

- High latency
- Sufficient parallelism
- Easily congested Proper locality level

malloc() is regarded as a bad practice for GPUs.

- High latency
- Sufficient parallelism
- Easily congested Proper locality level

How others deal with dynamic states? HeavyDB: *HyperLogLog, Prefix sum* TQP: *Prefix sum*

HyperLogLog:

- 1. One pass to *estimate* cardinality
- 2. Allocate
- 3. Second pass to fill allocation

Artem Kroviakov (TUM) 27

malloc() is regarded as a bad practice for GPUs.

• High latency

- Sufficient parallelism
- Easily congested Proper locality level

How others deal with dynamic states? HeavyDB: *HyperLogLog, Prefix sum* TQP: *Prefix sum*

HyperLogLog:

- 1. One pass to *estimate* cardinality
- 2. Allocate
- 3. Second pass to fill allocation

Workload: filter columns and fill a dynamic vector of entries

Artem Kroviakov (TUM) 28

malloc() is regarded as a bad practice for GPUs.

• High latency

- Sufficient parallelism
- Easily congested
- Proper locality level

How others deal with dynamic states? HeavyDB: *HyperLogLog, Prefix sum* TQP: *Prefix sum*

HyperLogLog:

- 1. One pass to *estimate* cardinality
- 2. Allocate
- 3. Second pass to fill allocation

Workload: filter columns and fill a dynamic vector of entries

Going down by one level leads to an order of magnitude more allocations

LingoDB (GPU extension)

- Prototype: replicate LingoDB's Q4.1 code in CUDA C++.
- Main problem: random global memory access during probing.

LingoDB is a CPU state-of-the-art compiled analytical database that uses MLIR.

Multi-level IR – can pick suitable abstraction layer for modifications.

LingoDB (GPU extension) - Results

Simple queries (Q1.X) are straightforward to implement, but:

- High register usage: 72 vs. 26 in Crystal
- More logic: e.g., nullables

Complex queries have high register pressure:

- LingoDB likes to use i64 where i32 suffices.
- Runtime functions can have big stack and are not inlined (ABI calls cost registers).

LingoDB (GPU extension) - Hurdles

Higher register pressure = less threads active at once = less ability to hide latency = slower execution.

Artem Kroviakov (TUM) 33

Conclusion

- Vectorization on GPU is faster when you have room for it.
- Even simple queries, produced by a real-world database engine can incur register pressure on GPUs.
- CPU and GPU can agree on the batch size without perf drawbacks on either side.
- Heap-based dynamic structures enable 2x performance benefit.
- Codegen infrastructure can be shared between two devices, no need for a whole new engine.

Future work

- There are multiple heap allocators for GPUs, evaluate them for database workloads. Do we need our own? We would like to have:
	- 1. low-register-cost coarse grained allocations
	- 2. fast free()
	- 3. latency is not so crucial as long as parallelism absorbs it.
- Is i64 needed in all of its uses? Can we inline runtime bitcode? Split complex pipelines?
- How to abort on heap overflow?
- How good chaining really is for HTs on GPUs? Compare LingoDB's chained hash table against HeavyDB's open addressing.

%5 = llvm.mlir.constant(10248 : index) : i64 %6 = llvm.mlir.constant(0 : index) : i64

%21 = nvvm.read.ptx.sreg.tid.x : i32 %22 = llvm.sext %21 : i32 to i64

%32 = nvvm.read.ptx.sreg.ntid.x : i32 %33 = llvm.sext %32 : i32 to i64

%34 = nvvm.read.ptx.sreg.nctaid.x : i32 %35 = llvm.sext %34 : i32 to i64

Index as i64: we have just wasted 5 registers

%116 = arith.extsi %55 : i32 to i128 i128 could be used more conservatively