
Parallel Query Processing on GPUs using Sub-operators

Master thesis

Artem Kroviakov

Lehrstuhl für Datenbanken

12. November 2024

1Artem Kroviakov (TUM)

Motivation

2Artem Kroviakov (TUM)

CPU GPU

RAM latency (cycles)
45 470

RAM bandwidth
460 GB/s 3.3 TB/s

ALUs (total)
~400 ~15000

Load/Store Units (total)
~300 ~3500

• State-of-the-art CPU databases often hit the bandwidth boundary.

• GPUs offer much higher bandwidth.

• GPUs are ubiquitous in consumer and data center environments.

• AI boom suggests that GPUs are here to stay and will be actively

developed, can we ride the GPU wave in databases?

• For analytics, why not sacrifice latency for bandwidth?

GPUs offer higher memory bandwidth and more compute

Goal: minimize instruction latency

Hardware intuition behind GPUs

3Artem Kroviakov (TUM)

Goal: maximize instruction throughput

Memory

coalescing

Multiple

Schedulers

Goal: minimize instruction latency

Hardware intuition behind GPUs

4Artem Kroviakov (TUM)

ILP

Branch

prediction

Out-of-order

execution

Branch

prediction

HW

Prefetching

Goal: maximize instruction throughput

Memory

coalescing

Multiple

Schedulers

Goal: minimize instruction latency

Hardware intuition behind GPUs

5Artem Kroviakov (TUM)

ILP

Branch

prediction

Out-of-order

execution

Branch

prediction

HW

Prefetching

Goal: maximize instruction throughput

Memory

coalescing

Multiple

Schedulers

Last resort ← Optimization via SMT→ First step

Quick GPU HW overview

6Artem Kroviakov (TUM)

Quick GPU HW overview

7Artem Kroviakov (TUM)

SMEM – a fast user-managed memory region (same HW unit as L1)

MapD, Omnisci, HeavyDB (mid 2010s):

• LLVM JIT compilation

• Huge code base

• Many physical operators

• Multi-GPU support

GPUs in databases

8Artem Kroviakov (TUM)

TQP (2022):

• Leverage PyTorch

tensor runtime

• Low effort

• Ok-ish performance

Crystal, Crystal-opt (2022):

• Hand-written SSB queries

• Vectorization

• Fastest SSB runner on GPUs

MapD, Omnisci, HeavyDB (mid 2010s):

• LLVM JIT compilation

• Huge code base

• Many physical operators

• Multi-GPU support

GPUs in databases

9Artem Kroviakov (TUM)

TQP (2022):

• Leverage PyTorch

tensor runtime

• Low effort

• Ok-ish performance

Crystal, Crystal-opt (2022):

• Hand-written SSB queries

• Vectorization

• Fastest SSB runner on GPUs

Idea

Approximate Crystal's hand-written performance while preserving HeavyDB's

generality by leveraging the existing state-of-the-art query engine.

Good bandwidth utilization means that the query time is proportional to the bandwidth limits of devices.

For CPUs and GPUs it is an order of magnitude.

Step 1: Gain insights from Crystal – CPU vs. GPU

10Artem Kroviakov (TUM)

Fastest GPU runner for simplified (numeric types only) SSB:

• Hand-crafted queries in CUDA C++

• Vectorized execution
int brand[ITEMS_PER_THREAD];

BlockLoad<…, ITEMS_PER_THREAD>(...

BlockProbeAndPHT_2<..., ITEMS_PER_THREAD>(...

• Collision free hash tables, tricky hash functions
int hash = (brand[ITEM] * 7 + (year[ITEM] - 1992)) % ((1998-1992+1) * (5*5*40));

Step 1: Crystal - Overview

11Artem Kroviakov (TUM)

Thread #0

Thread #1

Column

brand

Parallelism – vector per thread

Vector – 4 elements (in registers)

Could the GPU's SMT-oriented model be

enough to hide latencies like vectorization,

even when running "compiled" queries?

Step 1: Gain insights from Crystal – Compiled vs. Vectorized

12Artem Kroviakov (TUM)

Could the GPU's SMT-oriented model be

enough to hide latencies like vectorization,

even when running "compiled" queries?

Not really.

Some queries are up to 30% slower.

Step 1: Gain insights from Crystal – Compiled vs. Vectorized

13Artem Kroviakov (TUM)

Step 1: Gain insights from Crystal - Compiled vs. Vectorized

14Artem Kroviakov (TUM)

Compiled vs vectorized:

• Less instructions, but higher instruction latency.

• GPU's SMT is not enough to fully cover latency.

• Higher selectivity negates vectorization benefit.

SSB Q1.1
Scan+Filter+Sum Reduction.

Low selectivity.

Step 1: Gain insights from Crystal – Register usage

15Artem Kroviakov (TUM)

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel.

The limit depends on 3 parameters:

Register usage – why is it so important?

16Artem Kroviakov (TUM)

Kernel

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel.

The limit depends on 3 parameters:

Register usage – why is it so important?

17Artem Kroviakov (TUM)

SMEM usage
A thread-block requires N bytes of SMEM,
how many N's can SMEM hold at once?

Kernel
Thread-blocks

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel.

The limit depends on 3 parameters:

Register usage – why is it so important?

18Artem Kroviakov (TUM)

SM Scheduler slots
One SM can sustain at most 64 warps

SMEM usage
A thread-block requires N bytes of SMEM,
how many N's can SMEM hold at once?

Kernel
Thread-blocks Warps

GPU performance comes from the massive SMT, but how do we achieve it?

There is a limit on simultaneously active threads for a kernel.

The limit depends on 3 parameters:

Register usage – why is it so important?

19Artem Kroviakov (TUM)

Good scenario:
32 registers

No SMEM usage

=
Max. 2048 active threads

per SM

Bad scenario:

150 registers
No SMEM usage

=
Max. 416 active threads

per SM

Register demand of a threadSM Scheduler slots
One SM can sustain at most 64 warps

SMEM usage
A thread-block requires N bytes of SMEM,
how many N's can SMEM hold at once?

Kernel
Thread-blocks Warps

HeavyDB – each batch is processed by the entire GPU.

• Prefers huge batches, default size is 32M rows.

• Low pressure on the bookkeeping infrastructure.

Crystal – each "batch" is processed by a thread-block.

• Prefers small batches (512 rows in the original Crystal).

• A column is linearly stored in memory, threads "slice" into it.

How to map a batch to GPU?

20Artem Kroviakov (TUM)

HeavyDB

Too large batches

Too small batches

Approach Thread Blocks : Batches Intra-batch iteration range

HeavyDB 1 : N [0, #Total_threads)

Crystal 1 : 1 [0, #TB_threads)

SSB Q4.3

CPU morsel-driven

HeavyDB – each batch is processed by the entire GPU.

• Prefers huge batches, default size is 32M rows.

• Low pressure on the bookkeeping infrastructure.

Crystal – each "batch" is processed by a thread-block.

• Prefers small batches (512 rows).

• A column is linearly stored in memory, threads "slice" into it.

How to map a batch to GPU?

21Artem Kroviakov (TUM)

HeavyDB

Too large batches

Too small batches

Approach Thread Blocks : Batches Intra-batch iteration range

HeavyDB 1 : N [0, #Total_threads)

Crystal 1 : 1 [0, #TB_threads)

Mix 1 : N [0, #TB_threads)

SSB Q4.3

CPU morsel-driven

Crystal has some simplifications:

• Known cardinalities

• Query-specific collision-free hash functions

• Primitive types for reductions

Step 2: More general query processing

22Artem Kroviakov (TUM)

Almost an unrealistic scenario in databases

+

Technical limitations of GPUs

(e.g., a thread stack variable is inaccessible to other threads,

except for shuffles which are up to 8B)

To achieve a more general query processing, we need:​

• General dynamic data structures​

• ​Suitable results representation for generic merge logic

Crystal has some simplifications:

• Known cardinalities

• Query-specific collision-free hash functions

• Primitive types for reductions

Step 2: More general query processing

23Artem Kroviakov (TUM)

Almost an unrealistic scenario in databases

+

Technical limitations of GPUs

(e.g., a thread stack variable is inaccessible to other threads,

except for shuffles which are up to 8B)

To achieve a more general query processing, we need:​

• General dynamic data structures​

• ​Suitable results representation for generic merge logic

Device heap

Kernel-local concept

Step 2: More general queries – Kernel local

24Artem Kroviakov (TUM)

We must be able to easily access composite thread-local results.

Kernel Local – let each kernel have a global memory

allocation big enough to fit results at some locality level.

A different address space (not the same as thread's stack)

makes the results accessible by a pointer from any thread.

Locality levels that reflect GPU hierarchy:

1. Thread

2. Warp (max. 32 Threads)

3. Thread Block (max. 32 Warps) CPU morsel-driven

malloc() is regarded as a bad practice for GPUs.

• High latency

• Easily congested

Step 2: More general queries – Device Heap

25Artem Kroviakov (TUM)

malloc() is regarded as a bad practice for GPUs.

• High latency

• Easily congested

Step 2: More general queries – Device Heap

26Artem Kroviakov (TUM)

Sufficient parallelism

Proper locality level

malloc() is regarded as a bad practice for GPUs.

• High latency

• Easily congested

How others deal with dynamic states?

HeavyDB: HyperLogLog, Prefix sum

TQP: Prefix sum

HyperLogLog:

1. One pass to estimate cardinality

2. Allocate

3. Second pass to fill allocation

Step 2: More general queries – Device Heap

27Artem Kroviakov (TUM)

Sufficient parallelism

Proper locality level

malloc() is regarded as a bad practice for GPUs.

• High latency

• Easily congested

How others deal with dynamic states?

HeavyDB: HyperLogLog, Prefix sum

TQP: Prefix sum

HyperLogLog:

1. One pass to estimate cardinality

2. Allocate

3. Second pass to fill allocation

Step 2: More general queries – Device Heap

28Artem Kroviakov (TUM)

Sufficient parallelism

Proper locality level

Workload: filter columns and fill a dynamic vector of entries

Hash: ...

Next: nullptr

Key:

Value:

Hash: ...

Next: nullptr

Key:

Value:

Key Val

malloc() is regarded as a bad practice for GPUs.

• High latency

• Easily congested

How others deal with dynamic states?

HeavyDB: HyperLogLog, Prefix sum

TQP: Prefix sum

HyperLogLog:

1. One pass to estimate cardinality

2. Allocate

3. Second pass to fill allocation

Step 2: More general queries – Device Heap

29Artem Kroviakov (TUM)

Sufficient parallelism

Proper locality level

Workload: filter columns and fill a dynamic vector of entries

Hash: ...

Next: nullptr

Key:

Value:

Hash: ...

Next: nullptr

Key:

Value:

Key Val

Gallatin is great, but costs registers

Step 2: More general queries – Device Heap

30Artem Kroviakov (TUM)

Going down by one level leads to an order of magnitude more allocations

LingoDB is a CPU state-of-the-art compiled analytical

database that uses MLIR.

Multi-level IR – can pick suitable abstraction layer

for modifications.

LingoDB (GPU extension)

31Artem Kroviakov (TUM)

DB/RelAlg

SubOp/Arith

Util/Arith/Scf

LLVM

SQL

CPU Runtime

CPU(x86) GPU (Nvidia)

GPU Runtime

Query opt

Parallelization (GPU)
Specialization

SplitToDevices

• Prototype: replicate LingoDB's Q4.1 code in CUDA C++.

• Main problem: random global memory access during probing.

Build Probe-Aggregate

Crystal-opt ~1ms ~7ms

Prototype ~2ms ~20ms

LingoDB (GPU extension) - Results

32Artem Kroviakov (TUM)

Simple queries (Q1.X) are straightforward to

implement, but:

• High register usage: 72 vs. 26 in Crystal

• More logic: e.g., nullables

SF10

Complex queries have high register pressure:

• LingoDB likes to use i64 where i32 suffices.

• Runtime functions can have big stack and are not inlined (ABI calls cost registers).

LingoDB (GPU extension) - Hurdles

33Artem Kroviakov (TUM)

RTX A5000: sm_86RTX 2060: sm_75

Higher register pressure = less threads active at once = less ability to hide latency = slower execution.

• Vectorization on GPU is faster when you have room for it.

• Even simple queries, produced by a real-world database engine can incur register pressure on GPUs.

• CPU and GPU can agree on the batch size without perf drawbacks on either side.

• Heap-based dynamic structures enable 2x performance benefit.

• Codegen infrastructure can be shared between two devices, no need for a whole new engine.

Conclusion

34Artem Kroviakov (TUM)

• There are multiple heap allocators for GPUs, evaluate them for

database workloads. Do we need our own?

We would like to have:

1. low-register-cost coarse grained allocations

2. fast free()

3. latency is not so crucial as long as parallelism absorbs it.

• Is i64 needed in all of its uses? Can we inline runtime bitcode?

Split complex pipelines?

• How to abort on heap overflow?

• How good chaining really is for HTs on GPUs? Compare LingoDB's

chained hash table against HeavyDB's open addressing.

Future work

35Artem Kroviakov (TUM)

%5 = llvm.mlir.constant(10248 : index) : i64
%6 = llvm.mlir.constant(0 : index) : i64

%21 = nvvm.read.ptx.sreg.tid.x : i32
%22 = llvm.sext %21 : i32 to i64

%32 = nvvm.read.ptx.sreg.ntid.x : i32

%33 = llvm.sext %32 : i32 to i64

%34 = nvvm.read.ptx.sreg.nctaid.x : i32

%35 = llvm.sext %34 : i32 to i64

Index as i64: we have just wasted 5 registers

%116 = arith.extsi %55 : i32 to i128

i128 could be used more

conservatively

	Folie 1: Parallel Query Processing on GPUs using Sub-operators
	Folie 2: Motivation
	Folie 3: Hardware intuition behind GPUs
	Folie 4: Hardware intuition behind GPUs
	Folie 5: Hardware intuition behind GPUs
	Folie 6: Quick GPU HW overview
	Folie 7: Quick GPU HW overview
	Folie 8: GPUs in databases
	Folie 9: GPUs in databases
	Folie 10: Step 1: Gain insights from Crystal – CPU vs. GPU
	Folie 11: Step 1: Crystal - Overview
	Folie 12: Step 1: Gain insights from Crystal – Compiled vs. Vectorized
	Folie 13: Step 1: Gain insights from Crystal – Compiled vs. Vectorized
	Folie 14: Step 1: Gain insights from Crystal - Compiled vs. Vectorized
	Folie 15: Step 1: Gain insights from Crystal – Register usage
	Folie 16: Register usage – why is it so important?
	Folie 17: Register usage – why is it so important?
	Folie 18: Register usage – why is it so important?
	Folie 19: Register usage – why is it so important?
	Folie 20: How to map a batch to GPU?
	Folie 21: How to map a batch to GPU?
	Folie 22: Step 2: More general query processing
	Folie 23: Step 2: More general query processing
	Folie 24: Step 2: More general queries – Kernel local
	Folie 25: Step 2: More general queries – Device Heap
	Folie 26: Step 2: More general queries – Device Heap
	Folie 27: Step 2: More general queries – Device Heap
	Folie 28: Step 2: More general queries – Device Heap
	Folie 29: Step 2: More general queries – Device Heap
	Folie 30: Step 2: More general queries – Device Heap
	Folie 31: LingoDB (GPU extension)
	Folie 32: LingoDB (GPU extension) - Results
	Folie 33: LingoDB (GPU extension) - Hurdles
	Folie 34: Conclusion
	Folie 35: Future work

