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Abstract

State-of-the-art semantic prompt caches depend on manually defined static similarity
thresholds and employ least recently used (LRU) cache eviction policies. Manual
threshold adjustment is challenging because it depends on altering prompt complexity
and the embedding model. Incorrect thresholds either reuse wrong responses or trigger
unnecessary LLM inferences. This requires constant threshold monitoring, which
is inefficient. LRU policies for semantic prompt cache management do not correct
errors in embedding mappings and result in an inaccurate cache population. This
research introduces an online heuristic algorithm that dynamically adjusts the threshold
based on a user-defined error rate target and proposes a performance-based cache
eviction policy. On top of this, we build the advanced semantic prompt cache VectorQ
that supports the integration with any inference server or embedding model. We
demonstrate VectorQ’s performance across three datasets, achieve a 9x reduction in
error rates, and maintain comparable latency performance compared to state-of-the-art
semantic prompt caches.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3

2.1 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Inference Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Caching Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 DBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Vector Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Vector Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Vector Embedding Similarity . . . . . . . . . . . . . . . . . . . . . 6

3 Motivation 8

4 Related Work 10

4.1 Semantic Prompt Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Inference-optimized Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Serving Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Active Online Learning Nearest Neighbor Classifier . . . . . . . . . . . . 11

5 VectorQ 13

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Dynamic Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Epochs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Abstract Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.3 Error Rate and Reuse Rate . . . . . . . . . . . . . . . . . . . . . . 20

v



Contents

5.2.4 Cluster Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.5 Weighted Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.6 Threshold Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.7 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.8 An Active Online Learning Nearest Neighbor Classifier . . . . . 29

5.3 Re-Clustering and Cache Eviction . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 Create Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Update Existing Cluster . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Evict Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Implementation 36

6.1 Multiple User Resource Management . . . . . . . . . . . . . . . . . . . . 36
6.2 UML Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Evaluation 39

7.1 Baseline 1: Direct Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Baseline 2: GPT Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.1 Average Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.2 Worst Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Conclusion 50

List of Figures 51

List of Tables 53

Bibliography 54

vi



1 Introduction

Two high school classmates lost touch after graduation. Years later one became a data
analyst and tried to query an international social media database to find his friend.
How should he translate and semantically cluster database entries with traditional
SQL? While SQL excels at structured queries, Large Language Models (LLMs) such as
LLaMA (Touvron, Lavril, Izacard, et al., 2023) or GPT (Brown, 2020) transformed how
computers approach language understanding and reasoning at scale. However, running
these applications is very resource-expensive, requiring a large number of hardware
accelerators such as GPUs or FPGAs (Wei, Langer, Yu, et al., 2022). For example, an
NVIDIA L4 GPU running LLaMa3-8B can only process 6 KB of text per second, taking
about a day to handle 15 GB of data; and costs around $10K on OpenAI’s GPT-4o.

Most modern Large Language Models (LLMs) are built on autoregressive transformer
architectures, which generate tokens sequentially by conditioning on a given prompt
and the previously generated token sequence (Shi, Zhang, Yao, et al., 2024). During this
process, the model utilizes a key-value (KV) cache to store intermediate representations,
such as query, key, and value embeddings for each token. Existing research optimizes
the KV cache hit rate with prefix caching (Zheng, Yin, Xie, et al., 2023) or memory
management strategies like paged attention (Kwon, Li, Zhuang, et al., 2023) to reduce
prompt latency. However, common LLM applications like chatbots or LLM-based
SQL queries share semantically similar prompts with the same answer (Zhu, Zhu, &
Jiao, 2024). Instead of only reusing prefixes to reduce the inference latency, we can
use semantic prompt caches to reuse entire prompts and not make an inference call
at all. A semantic prompt cache reduces redundant LLM inference calls by caching
responses to prompts based on their semantic similarity (Zhu, Zhu, & Jiao, 2024). The
workflow involves embedding each incoming prompt, checking for semantically similar
embeddings in the cache, and retrieving the cached response if a similar prompt is
found. If the cache cannot return a response, it queries the LLM and updates the cache
with the new response. The architecture typically includes a vector database-based
cache for storing prompt embeddings, a K-nearest neighbor similarity search to identify
similar embeddings, and a threshold mechanism to determine if a reuse candidate is
qualified.
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1 Introduction

Semantic prompt caches, such as GPT Cache (Bang, 2023) and Microsoft’s Cosmos DB
cache extension (Markjbrown, 2024), are widely used in production systems. These
systems use vector embeddings to evaluate prompt similarity and rely on a threshold
to decide if a cached response can be reused. To set this threshold manually is
labor-intensive, error-prone, and impractical, as it varies with prompt complexity and
embedding models. Incorrect thresholds reduce performance because they are either
too low, reusing incorrect responses, or too high, triggering unnecessary LLM inferences.
This forces users into the impractical task of constantly monitoring and adjusting the
threshold to maintain accuracy and efficiency (Sudarsan & MasayaNishimaki, 2024).
GPT Cache employs a static threshold and a least recently used (LRU) policy to manage
the vector embedding cache; however, this approach does not address erroneous
embedding mappings and results in a poorly populated and unreliable embedding
cache.

Our research presents novel advancements in dynamic threshold adjustment and
performance-based cache management for semantic prompt caching. We propose an
online heuristic approach that dynamically adjusts the threshold based on observed
performance, allowing the system to adapt across diverse datasets and varying prompt
complexities. Users can specify a desired accuracy level, and the system automatically
fine-tunes the threshold to optimize latency while maintaining the specified accuracy,
eliminating the need for manual threshold tuning. Additionally, we introduce adaptive
re-clustering mechanisms to effectively manage cache size and enhance embedding
accuracy by intelligently merging related embeddings and evicting less relevant ones.
In this work, we present VectorQ, a comprehensive semantic prompt cache that incorpo-
rates dynamic thresholding and adaptive re-clustering. VectorQ is designed to support
the integration with any inference server or embedding model. We evaluate its perfor-
mance across three datasets and demonstrate its ability to adjust to user-defined error
rate targets. Compared to state-of-the-art semantic prompt caching systems, VectorQ
achieves a 9x reduction in error rates and maintains comparable latency performance.
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2 Background

This chapter provides the foundational knowledge to understand the concepts and
techniques explored in this thesis. It introduces the architecture and challenges of
transformer-based large language models (LLMs), including their inference and caching
constraints. We outline database management system (DBMS) concepts, introduce
query optimization, user-defined functions (UDFs), and the role of vector databases in
similarity-based retrieval. Together, these topics create a comprehensive background
to understand the intersection of LLMs and semantic prompt caching in modern
computational systems.

2.1 Large Language Models

Transformer-based large language models (LLMs) are designed to model the probability
distribution of a sequence of tokens to capture dependencies between elements in
sequential data. They employ factorization to decompose the joint probability of a token
sequence into a product of conditional probabilities to predict the next token based
on all preceding tokens (Bengio, Ducharme, & Vincent, 2000). The core mechanism is
self-attention, where for each input token, a query vector interacts with the key and
value vectors of all other tokens to compute attention scores. These scores determine the
relative importance of tokens in the sequence and enable the model to weigh contextual
information effectively.
The architecture of a Transformer model (Vaswani, 2017) includes components such
as embedding layers, feed-forward layers, and residual connections, where the self-
attention layer captures relationships across token positions. Transformer-based LLMs
operate in two distinct phases. The prompt phase processes an input sequence in
parallel to compute probabilities for initial tokens, and the autoregressive generation
phase which sequentially predicts tokens one by one. These phases enable the models
to handle tasks such as text completion, generation, and classification, but optimizing
their inference performance remains a critical challenge.

3



2 Background

2.1.1 Inference Server

An inference server facilitates the deployment and execution of pre-trained machine-
learning models to process and return client requests.

Figure 2.1: Inference server architecture.

The Endpoint enables clients to interact with the inference server. The Request Pool

temporarily stores incoming requests in a queue and the Scheduler schedules the
requests sequentially or in batches. The Engine Master serves as the central controller,
routes requests among available resources, and supervises the execution process. The
Workers execute inference tasks in parallel and utilize computational resources such as
GPUs or FPGAs (Wei, Langer, Yu, et al., 2022).

2.1.2 Caching Challenges

The GPU’s KV cache stores the key and value vectors generated during the forward
pass of a transformer-based LLM. This allows the model to reuse key and value vectors
during autoregressive generation, reducing redundant computations for previously
processed tokens. The cache grows with the number of tokens and layers and the
memory requirements scale with request size and batch count (Shi, Zhang, Yao, et al.,
2024). Efficient management of the KV cache is critical to optimize GPU memory usage,
as inadequate handling can constrain throughput and increase latency in LLM serving.
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2 Background

2.2 DBMS

Database Management Systems (DBMS) are used to organize, store, and retrieve data in
a structured and efficient manner. They provide extensibility through features such as
User-Defined Functions (UDFs), which allow users to define custom operations. Query
optimization ensures that the database executes queries efficiently to reduce latency
and resource usage. Vector databases introduce semantic search capabilities and enable
unstructured data operations through vector embeddings that capture contextual and
semantic relationships.

2.2.1 UDFs

User-Defined Functions (UDFs) are custom functions that extend the capabilities of
Database Management Systems (DBMS) by allowing users to define specific operations
beyond the scope of standard SQL. These functions are typically written in procedural
languages supported by the DBMS, such as PL/pgSQL or PL/Python. They can encap-
sulate complex logic or integrate external processing directly within a database query.
UDFs enable applications to perform data transformations, advanced calculations, and
external system integrations directly within the database environment (Hsu, Chen, Wu,
et al., 2010). Database users can integrate external services, such as LLM inference
servers, by making API calls through UDFs. This approach enables real-time processing
of queries that require external computation, such as generating embeddings or per-
forming classification tasks. For example, a Python-based UDF can utilize the requests
library to send an API request to an inference server and return the response as part of
a database query (Friedman, Pawlowski, & Cieslewicz, 2009).

2.2.2 Query Optimization

Query optimizers in database management systems generate an efficient execution
plan for a given query by considering factors like index usage, join order, and data
distribution. The optimizer relies on deterministic cost models to estimate the exe-
cution time and resource requirements of each query operation (Jarke & Koch, 1984).
However, UDFs present a challenge because their behavior is often non-deterministic
and dependent on external factors such as API responses. The optimizer cannot predict
or analyze the execution cost of UDFs due to their lack of transparency and reliance on
external environments. As a result, queries involving UDFs are typically executed row
by row (Franz, Arch, Hirn, et al., 2024), which bypasses many optimization techniques
and leads to increased latency.
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2 Background

2.2.3 Vector Databases

Vector databases are specialized database systems designed to store, retrieve, and
manage high-dimensional vector representations of data. These vectors, often generated
by machine learning models, encode the semantic meaning of unstructured data, such
as text, images, or audio, into a numerical format suitable for similarity-based retrieval
(Malkov & Yashunin, 2018). The primary goal of a vector database is to efficiently
support operations like nearest neighbor searches, which are essential for applications
such as recommendation systems, semantic search, and machine learning pipelines.
Vector databases consist of several components that enable storage and retrieval of high-
dimensional vectors. Vector indexing structures, such as HNSW (Malkov & Yashunin,
2018) or FAISS (Douze, Guzhva, Deng, et al., 2024), organize vectors based on their
proximity to support fast approximate nearest neighbor searches. The storage engine

handles the vector data and incorporates hybrid storage to combine vector embeddings
with metadata. Similarity metrics like cosine similarity, Euclidean distance, or inner
product are used to measure vector closeness.

2.2.4 Vector Embeddings

Vector embeddings are numerical representations that encode the semantic or con-
textual meaning of data in a fixed-dimensional vector space and enable tasks like
similarity search, clustering, and classification. These embeddings are mainly gener-
ated with transformer-based or bi-directional machine learning models (Grohe, 2020).
Transformer-based models, such as GPT (Brown, 2020), generate embeddings using
attention mechanisms to weigh the relationships between tokens. They operate sequen-
tially and predict tokens one at a time and condition on prior context. Bi-directional

models, such as BERT (Alsentzer, Murphy, Boag, et al., 2019), compute embeddings by
considering both past and future tokens simultaneously and capture a more holistic con-
text. The key difference is their focus: transformer-based models prioritize sequential
generation, while bi-directional models emphasize holistic context understanding.

2.2.5 Vector Embedding Similarity

Vector embedding similarity quantifies the relationship between two embeddings by
measuring their closeness in a high-dimensional vector space.
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2 Background

Cosine Similarity

Cosine similarity measures the similarity between two vectors by calculating the cosine
of the angle between them in a high-dimensional space. It quantifies how aligned the
vectors are regardless of their magnitude (Xia, Zhang, & Li, 2015). The formula for
cosine similarity is:

Cosine Similarity(A, B) =
A · B

kAkkBk

where A · B is the dot product of vectors A and B, and kAk and kBk are their respec-
tive magnitudes, computed as the Euclidean norm. For our dynamic threshold, we
normalize the cosine similarity cos(A, B) to the interval [0, 1], where 1 corresponds to a
perfect semantic match (A = B) and 0 indicates no semantic similarity (A ? B).

7



3 Motivation

Semantic prompt caches address the computational cost and latency challenges associ-
ated with Large Language Models (LLMs), particularly in applications with repetitive
or semantically similar queries (Zhu, Zhu, & Jiao, 2024). By storing embeddings of
prompts and their corresponding responses, these caches enable systems to reuse
answers for new, semantically similar prompts through vector similarity search. For
example, in a customer support system, if multiple users ask variations of "How do I
reset my password?" the system can return the cached response rather than querying
the LLM repeatedly. This reduces latency and operational costs by minimizing redun-
dant LLM calls and lowering token consumption, which is particularly beneficial in
high-demand scenarios like Retrieval-Augmented Generation (RAG) where payloads
can be similar and large (Markjbrown, 2024).

Semantic prompt caches are particularly useful in relational database systems that
leverage Large Language Models (LLMs) for query processing. LLMs extend the
capabilities of SQL by handling complex tasks such as natural language understanding,
semantic classification, and contextual reasoning, which SQL alone cannot achieve. For
example, an LLM can classify product descriptions, enabling category-specific analysis,
which goes beyond SQL’s native functionality.

SELECT

id, name, description,

LLM(’Which product category does this description

belong to? {description}’, description) AS category

FROM product_description;

In Postgres, user-defined functions (UDFs) can call inference server APIs, such as
OpenAI, to perform such tasks. However, database systems execute UDFs queries
row by row due to their non-deterministic outputs that make them incompatible with
the query optimizer (Franz, Arch, Hirn, et al., 2024). As a result, queries rely on
synchronous execution and are constrained by the latency of the inference server.
Semantic prompt caching mitigates this issue by reusing responses for semantically
similar rows, which are more prevalent in structured databases. This reduces the need

8



3 Motivation

for repeated inference calls and reduces query execution time.

State-of-the-art semantic prompt caches, such as GPT Cache (Bang, 2023) and imple-
mentations from Microsoft (Markjbrown, 2024) and MongoDB (Joshi, 2024), rely on
user-defined static threshold values to determine whether the nearest embedding is
sufficiently close for reuse. The choice of threshold significantly impacts cache per-
formance: a low threshold increases cache hits but risks inaccuracies, while a high
threshold improves accuracy but reduces reuse. How should a user select this thresh-
old? One approach involves performing an initial analysis using the embedding model
and a subset of possible prompts, testing various thresholds to find one that aligns with
a desired accuracy rate. However, a static threshold proves insufficient because the
optimal threshold varies with the complexity of incoming prompts—complex prompts
require higher thresholds, while simpler prompts perform well with lower ones. As
a result, a fixed threshold cannot guarantee consistent accuracy. While users could
manually adjust the threshold over time, this approach is impractical due to the need for
frequent manual changes and uncertainty about the appropriate adjustment magnitude.
As a result, state-of-the-art semantic prompt caches either sacrifice accuracy or fail to
achieve sufficient prompt reuse.

Our research introduces an online heuristic algorithm that dynamically adjusts the
threshold based on the latest semantic prompt cache performance. Users specify
a desired upper error rate bound, and the algorithm maintains this accuracy and
optimizes prompt reuse. The algorithm is more robust to biased data and adapts to
changes in the complexity of incoming prompts to ensure reliable performance across
varying scenarios.

9



4 Related Work

The widespread adoption of large language models (LLMs) has driven the need for
optimization techniques to manage their computational cost, latency, and scalability.
Among these techniques, semantic prompt caching has emerged as a solution to reduce
redundant computations by reusing responses for semantically similar prompts. How-
ever, semantic prompt caching is only one part of a larger ecosystem of optimization
approaches. Inference-optimized systems, such as vLLM (Kwon, Li, Zhuang, et al.,
2023) and Orca (Yu, Jeong, Kim, et al., 2022), focus on accelerating LLM execution
and resource management. General-purpose prompt caching frameworks like SGLang
(Zheng, Yin, Xie, et al., 2023) and INFaaS (Romero, Li, Yadwadkar, & Kozyrakis, 2021)
explore strategies to improve reuse efficiency by incorporating user knowledge with
a serving framework. Active online learning nearest neighbor classifiers provide the-
oretical frameworks for adaptive systems and offer insights into how thresholds can
evolve dynamically. This chapter examines the distinctions among these approaches
and positions semantic prompt caching within the broader landscape of LLM serving
and adaptive learning methodologies.

4.1 Semantic Prompt Caching

GPTCache (Bang, 2023) is an open-source semantic prompt caching framework designed
to optimize the efficiency of large language model (LLM) queries. It stores embeddings
of prompts and their corresponding responses and uses vector similarity search to
retrieve cached responses for semantically similar incoming prompts. This reduces
redundant LLM inference calls, lowering both computational costs and response latency.
Microsoft (Markjbrown, 2024) and MongoDB (Joshi, 2024) provide frameworks that
build upon the architectural design of Prompt Cache. However, these frameworks
rely on static user-defined similarity thresholds, which are inadequate for dynamic
workloads where the complexity of incoming prompts fluctuates, leading to suboptimal
reuse or inaccurate responses.

10



4 Related Work

4.2 Inference-optimized Systems

vLLM (Kwon, Li, Zhuang, et al., 2023) and Orca (Yu, Jeong, Kim, et al., 2022) are
systems designed to enhance the efficiency of large language model (LLM) serving by
optimizing memory management and scheduling. vLLM introduces PagedAttention,
an attention algorithm inspired by virtual memory and paging techniques, to address
inefficiencies in managing the key-value (KV) cache memory for LLMs (Kwon, Li,
Zhuang, et al., 2023). This approach achieves near-zero waste in KV cache memory
and allows flexible sharing within and across requests, improving throughput by 2-4
times compared to existing systems like FasterTransformer and Orca. Orca focuses
on efficient inference by scheduling and interleaving requests, enabling more parallel
processing and increasing GPU utilization (Yu, Jeong, Kim, et al., 2022). Semantic
prompt caches complement inference-optimized systems by prioritizing the reuse of
existing answers whenever possible. When reuse is not feasible, inference-optimized
systems ensure optimal resource utilization and reduced computational overhead.

4.3 Serving Frameworks

SGLang (Zheng, Yin, Xie, et al., 2023) is a serving framework for large language
models designed to enhance interaction speed and control by co-designing the backend
runtime and frontend language. It offers features like RadixAttention for efficient
prefix caching and supports a range of generative models to provide an intuitive
interface for programming LLM applications. INFaaS (Romero, Li, Yadwadkar, &
Kozyrakis, 2021) is an inference-as-a-service system that automates model selection
and scaling for deep learning inference. It dynamically chooses the most appropriate
model and instance type based on user-specified latency and accuracy requirements.
By integrating semantic prompt caches, these systems can further reduce latency and
adjust the prompt cache based on user-defined parameters.

4.4 Active Online Learning Nearest Neighbor Classifier

The Never-Ending Learning from Time Series Streams (Hao, Chen, Zakaria, et al., 2013)
framework proposes a solution for continuous learning from time series data streams.
The framework leverages active learning and queries labels selectively to adapt to
changing patterns within evolving data streams. It introduces motif detection as a
scalable proxy for more complex patterns and enables learning with minimal labeled
data while maintaining adaptability to new patterns over time. The Active Learning for

11



4 Related Work

Time Series Classification (ACTS) (Peng, Luo, & Ni, 2017) approach focuses on time
series classification optimization through active learning. It uses an informativeness
metric that combines uncertainty and utility and is specialized to time series data. The
authors adapt shapelet discovery to identify key discriminative features to efficiently
select data points that maximize classifier performance while minimizing the need
for labeled examples. Our dynamic threshold algorithm draws inspiration from the
dynamic parameter adaptation in time series data and applies this approach to cosine
similarity thresholds for semantic prompt caching.
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5 VectorQ

VectorQ is an advanced semantic prompt cache that enables user-defined accuracy
objectives by utilizing dynamic thresholds and embedding cluster optimizations. A
semantic prompt cache reduces redundant large language model (LLM) inference calls
by caching responses to prompts based on their semantic similarity. The workflow
involves embedding each incoming prompt, checking for semantically similar embed-
dings in the cache, and retrieving the cached response if a similar prompt is found. If
the cache cannot return a response, it queries the LLM and updates the cache with the
new response. The architecture typically includes a vector database-based cache for
storing prompt embeddings, a K-nearest neighbor similarity search to identify similar
embeddings, and a threshold mechanism to determine if a reuse candidate is qualified.

5.1 Architecture

Traditional architectures process Large Language Model (LLM) queries by directly
querying inference servers. Inference servers are essential as LLMs depend on special-
ized hardware, such as GPUs and FPGAs, to deliver reasonable performance. These
servers centralize the computational load and eliminate the need for resource-heavy
hardware on client machines. However, direct querying requires repeated inference
computations, even for semantically similar prompts, which leads to inefficient use of
hardware resources. This inefficiency increases latency and operational costs, particu-
larly for high-throughput applications, as no caching mechanism is employed to reuse
prior results.

13



5 VectorQ

Figure 5.1: Client-server architecture without caching, where LLM requests are sent
directly to the inference server.

VectorQ is a standalone server that acts as an intermediary between the application and
the inference server. Upon receiving an inference request from the client, it attempts to
reuse a response from a previously processed request to avoid the expensive inference
server.

Figure 5.2: Client-server architecture with semantic VectorQ caching, where LLM re-
quests are routed through the cache before eventually reaching the inference
server.

With this architecture in place, VectorQ leverages specialized building blocks to effi-
ciently handle, process, and cache LLM prompt requests, as detailed in the following
section.

5.1.1 Building Blocks

VectorQ receives LLM prompt requests through its API Endpoint. The Embedding

Generator converts each query into a vector embedding representation. The Similar

Answer Extractor searches for a previously processed prompt with similar seman-
tics to reuse its answer. The Vector DB stores embeddings of previously processed
prompts and enables a K-nearest neighbors search to find the most similar prompt. The

14



5 VectorQ

Similarity Evaluator applies a dynamic threshold to determine whether the nearest
neighbor’s cosine similarity is large enough for reuse. If the similarity exceeds this
threshold, the Answer Cache provides the answer that corresponds to the nearest
neighbor. Otherwise, VectorQ performs a direct inference to generate a new answer.
Subsequently, the Similarity Evaluator updates the dynamic threshold based on recent
performance. The Vector DB Supervisor adds the newly generated answer to the vector
database, refines the embedding clusters, and evicts low-quality embeddings. Finally,
VectorQ returns the answer to the client.

15



5 VectorQ

Figure 5.3: The VectorQ architecture enables efficient LLM inference by reusing LLM
responses through semantic prompt caching. It consists of components for
embedding generation, similarity evaluation, and dynamic thresholding,
supported by a vector database, answer cache, and supervisor for cache
optimization.

The following two sections explain the dynamic threshold computation and the re-
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5 VectorQ

clustering and cache eviction policies.

5.2 Dynamic Threshold

We propose an online heuristic approach that integrates internal knowledge to achieve
dynamic performance-based threshold adjustments. The user defines an upper bound
for the error rate and the threshold adjusts to maintain the desired accuracy while
optimizing the reuse rate. The key idea of this approach is to reward or punish the
threshold based on its accuracy in reusing correct answers.

5.2.1 Epochs

In the dynamic threshold adjustment mechanism, epochs serve as self-contained inter-
vals to evaluate and adjust the system’s performance in response to varying prompt
complexities. Each epoch approximates error and reuse rate metrics to adapt and align
the threshold with a user-defined maximum error rate. At the start of each epoch, the
threshold is set to its initial value, typically 1.0. The threshold dynamically adjusts
during the epoch to balance accuracy and reuse efficiency.

If the error rate within an epoch exceeds the user-defined maximum, the system
terminates the current epoch, resets the threshold, and initiates a new epoch. This
approach allows the system to rapidly adapt to rapid changes in prompt complexity
and prevents gradual drift in performance metrics. Unlike a global error rate, which
averages performance over time and is slow to respond, epoch-specific error rates
enable more precise, localized adjustments, making the system responsive to dynamic
input conditions.
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Figure 5.4: Epochs enable interval-specific error rate calculations and reset the threshold
t to its maximum after the user-defined error rate is reached.

The transitions between epochs are designed to optimize reuse while minimizing
performance degradation and ensure that the system remains robust when handling
diverse prompts. The following subsections position this approach within the dynamic
threshold framework.

5.2.2 Abstract Algorithm

This section introduces the abstract algorithm for the dynamic threshold to provide
a holistic overview before we explain the components in more detail. The algorithm
has two major cases. In the first case, the epoch error rate exceeds the user-defined
maximum error rate. Consequently, we start a new epoch and set the threshold to its
maximum value of 1.0. In the second case, we explore the ongoing epoch and adjust the
threshold based on its performance. We normalize the cosine similarity cs = cos(A, B)
to the interval [0, 1], where 1 corresponds to a perfect semantic match (A = B) and 0
indicates no semantic similarity (A ? B). We identified four distinct epoch scenarios
that enable us to increase or decrease the cosine similarity threshold use-case specific.

In the first scenario, the system performed a direct inference because the cosine simi-
larity between the current embedding and its nearest neighbor is below the threshold.
This outcome is suboptimal because we could have avoided the expensive direct in-
ference and returned the reused VectorQ answer instead. Consequently, we punish
the threshold and decrease it. In the second scenario, the system correctly reused the
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answer from VectorQ and we further decrease the threshold to increase the reuse rate.

In the third scenario, the system made a direct inference because the cosine similarity
between the current embedding and its nearest neighbor is below the threshold. This
outcome is optimal because the VectorQ response would have been incorrect. Conse-
quently, we reward the threshold and increase it to improve the error rate. In the fourth
scenario, the system reused an answer, but this answer is wrong because it deviates
from the direct inference result. We consider this suboptimal because the threshold
should have been higher to reject the reuse. Consequently, we punish the threshold
and increase it.

Algorithm 1: Abstract Dynamic Threshold Algorithm
Data : Direct Inference Answer d_a, VectorQ Answer v_a, Threshold t, Cosine

Similarity cs Between Current Embedding and Nearest Neighbor, Epoch
Error Rate e_e, User-Defined Maximum Error Rate m_e

Result : Threshold increase or decrease

1 delta m_e� e_e

2 if delta < 0 then

3 t
0  1.0

4 return t
0

5 end

6 if d_a == v_a then

7 if cs < t then

8 t
0  t� f actor1 // Case 1) direct inference, punish

9 else

10 t
0  t� f actor2 // Case 2) vectorQ, reward

11 end

12 else

13 if cs < t then

14 t
0  t + f actor3 // Case 3) direct inference, reward

15 else

16 t
0  t + f actor4 // Case 4) vectorQ, punish

17 end

18 end

19 return t
0

Now we know when to adjust the threshold, but how do we determine the factor by
which it should be increased or decreased? The next sections introduce, combine, and
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scale the three parameters Error Rate, Reuse Rate, and Cluster Rate to determine the
case-specific factor.

5.2.3 Error Rate and Reuse Rate

We perform occasional checks on a five-step basis to monitor the current performance
by evaluating whether a reused answer aligns with the ground truth. We use an LLM
response as the ground truth. Consequently, we can calculate the error rate based on
correctly and incorrectly reused answers during an epoch.

EpochErrorRate = e_e =
#epoch_wrong_reused_answers

#epoch_all_answers

Since the number of embeddings in the vector database corresponds to the number of
non-reused answers, we can infer the reuse rate as follows.

EpochReuseRate = e_r =
#epoch_reused_answers

#epoch_all_answers

The three counter variables get updated at every occasional check and reset when a
new epoch starts. We leverage the error rate and reuse rate to construct the threshold
factors in section 5.2.6.

5.2.4 Cluster Rate

The vector database enables k-nearest neighbor retrieval of the closest vector embed-
dings based on cosine similarity. The k-nearest neighbor cosine similarity values are
structured as [x, x1, x2, . . . , xk�1], where x represents the cosine similarity between the
embedding of the current prompt and the closest embedding in the vector database.
The parameter dt encapsulates the knn cluster knowledge by determining the distance
between the cosine similarity threshold t and the cluster center of K-nearest neighbors.
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Direct Inference. Direct Inferece VectorQ VectorQ

We compute the cluster rate dt as the absolute distance between the threshold t and the
cluster center, defined as the median of the k-nearest neighbors.

dt = |t�median(x1, x2, . . . , xk)|

We leverage the cluster rates information to construct the threshold factors in section
5.2.6.

5.2.5 Weighted Scaling

Next, we apply weighted scaling to the parameters error_rate, e_r, and dt based on the
user-defined error rate bound to ensure that each parameter’s contribution accurately
reflects its real significance. Rather than using a uniform impact across all values,
weighted scaling allows us to emphasize critical values while minimizing the influence
of lower, less meaningful values.

Error Rate

We represent the distance between the user-defined maximum error rate m_e and the
actual error rate e_e as delta. We use the non-inverted scaling function e(delta, m_e) in
threshold-decrease cases to signal that a small delta should not further contribute to a
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threshold decrease. A small delta implies that we almost exceed the error rate upper
bound and therefore do not want to decrease it further. A large delta implies room
for errors because the distance to the upper bound is large. We decrease the threshold
more. The reversed logic applies for the threshold-increase case where we scale with
e
�1(delta, m_e). The following weighted sigmoid functions implement this behavior

where m_e is the upper bound for the error rate.

e(delta, m_e) = m_e · 2.0

1.0 + e
8·(� delta

m_e
�0.5)

We need the inverse for the case-specific factor adjustment in section 5.2.6.

e
�1(delta, m_e) = m_e · 2.0

1.0 + e
8·( delta

m_e
+0.5)

The functions adjust their y-axis height based on m_e because small upper bounds
require small consecutive threshold changes. We use a skewing factor of eight to
capture the full spectrum of the x-axis within the range of 0 to 0.5. We have 2.0 in the
nominator and shift by 0.5 because it is the maximum m_e value. The graph below
visualizes both functions.

Figure 5.5: Red line = e(delta, m_e), Blue line = e
�1(delta, m_e) , Left: m_e = 0.1. Right:

m_e = 0.4, x-axis = delta, y-axis = scaled delta with m_e bias

We apply the scaling functions e(delta, m_e) and e
�1(delta, m_e) in section 5.2.6.
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Reuse Rate

In a threshold-increase case, we want to increase less if the reuse rate is low because it
would further decrease the threshold. The function r(e_r, m_e) represents this behavior.
In a threshold-decrease case, we want to decrease more if the reuse rate is low to
increase the reuse. The function r

�1(e_r, m_e) implements this behavior. The following
weighted sigmoid functions implement this behavior where e_r is the reuse rate and
m_e is the upper bound for the error rate.

r(e_r, m_e) =
1.0

1.0 + e8·(�e_r+2·m_e)

We need the inverse for the case-specific factor adjustment in section 5.2.6.

r
�1(e_r, m_e) =

1.0
1.0 + e8·(e_r�2·m_e)

The functions adjust their x-axis position based on m_e, as small error rates prioritize
reuse less than large ones. Consequently, we want to scale more reuse rates to large
values when m_e is large and vice versa. We use a skewing factor of eight to capture
the full spectrum of the x-axis within the range of 0 to 1. We multiply m_e by two
to prioritize reuse more for larger values. The graph below visualizes the weighted
sigmoid function.

Figure 5.6: Blue line = r(e_r, m_e), Green line = r
�1(e_r, m_e). Left: m_e = 0.1, Right:

m_e = 0.4, x-axis = reuse rate, y-axis = scaled reuse rate with m_e bias

We apply the scaling functions r(e_r, m_e) and r
�1(e_r, m_e) in section 5.2.6.

Cluster Rate

For dt, a small value implies a dense or closer cluster of neighbors and its contribution
should remain low. As dt grows, reflecting more scattered neighbors, the contribution
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should increase, to encourage threshold adjustments. We use the following weighted
sigmoid functions d(dt) and d

�1(dt) to put significance on boundary values as they
represent dense and close clusters.

d(dt) =
1.0

1 + e8·(�dt+0.5)

We need the inverse for the case-specific factor adjustment in section 5.2.6.

d(dt) =
1.0

1 + e8·(�dt+0.5)

We use a skewing factor of eight and shift by 0.5 to capture the full spectrum and center
on the x-axis within the dt range of 0 to 1.The graph below visualizes the weighted
sigmoid function.

Figure 5.7: Blue line = d(dt), Red line = d
�1(dt). X-axis = dt, y-axis = scaled dt

We apply the scaling functions in section 5.2.6.

5.2.6 Threshold Factors

Now that we defined and scaled the three parameters, we are ready to construct the
case-specific factors to modify the threshold.

Case 1

Case 1 in Algorithm 2 implies a direct inference that could have been replaced with a
VectorQ answer reuse and we decrease the threshold.

delta e_r dt

e(delta, m_e) r
�1(e_r) d(dt)
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A small delta should decrease the threshold less as we almost exceed the error rate
bound and a decrease increases the likelihood of errors. If the delta is large, we have
room for errors and want to decrease the threshold by a larger value to encourage more
reuse.

For e_r, a high value suggests frequent answer reuse. Therefore, we can afford a
threshold decrease to lower the error rate. However, if the reuse rate is low, the
threshold should be decreased to encourage more reuse.

For dt, a small value implies that the cluster center is close to the current threshold
and that the threshold was close to accepting it. Consequently, we want to decrease
the threshold only slights. A large dt implies that the cluster center is far away and
our threshold was not even close to accepting the reuse. We use the large dt value to
decrease the threshold.

f actor1 = e(d, m_e) ·
✓

r
�1(e_r, m_e) + d(dt)p

e_c

◆

We multiply the scaled delta value with the sum of the scaled error rate and cluster rate.
The sum of error and cluster rate provides an initial factor size and gets scaled by the
delta multiplication. The delta respects the upper bound for the error rate and scales
the initial factor down in case of a low upper bound to decrease less. We divide by the
root of the epoch counter e_c to make smaller threshold decreases with an increasing
epoch length.

Case 2

Case 2 in Algorithm 2 implies that VectorQ correctly reused the answer and we decrease
the threshold.

delta e_r dt

e(delta) r
�1(e_r) d

�1(dt)

A small delta should decrease the threshold less as we almost exceed the error rate
bound and a decrease increases the likelihood of errors. If the delta is large, we have
room for errors and want to decrease the threshold by a larger value to encourage more
reuse.

When the e_r is high, there is no need to lower the threshold to maintain accuracy. If
the reuse rate is low, we try a lower threshold to encourage more reuse.
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A small dt value implies that the cluster center is close to the threshold and we almost
rejected the reuse. Consequently, we invert the small dt value to decrease more. A large
dt implies a large distance between the cluster center and threshold. We do not want to
decrease further because this might increase the error rate.

f actor2 = e(d, m_e) ·
✓

r
�1(e_r, m_e) + d

�1(dt)
log(e_c) ·pe_c

◆

We multiply the scaled delta value with the sum of the scaled error rate and cluster
rate. The sum of error and cluster rate provides an initial factor size and gets scaled
by the delta multiplication. The delta respects the upper bound for the error rate and
scales the initial factor down in case of a low upper bound to decrease less. We divide
by the product of the epoch counter’s root and logarithm to make smaller threshold
decreases with an increasing epoch length and reward less.

Case 3

Case 3 in Algorithm 2 implies a direct inference that correctly rejected the VectorQ
answer reuse and we increase the threshold.

delta e_r dt

e
�1(delta) r(e_r) d

�1(dt)

We take the inverse of the delta because a large one should increase the threshold less
as we have room for errors. If the delta is small we encourage threshold increments
because we are about to exceed the error rates upper bound.

When the e_r is high, we can further increase the threshold for potentially better
accuracy. If the reuse rate is low, we want to avoid large increases that could further
reduce reuse efficiency.

A small dt implies that the cluster center is close to the threshold and we almost reused
the answer. Consequently, we invert the small dt value to increase the threshold more.
A large dt implies that the cluster center is far away and that our threshold value could
be too high. Consequently, we do not want to increase the dt much further.

f actor3 = e
�1(d, m_e) ·

✓
r(e_r, m_e) + d

�1(dt)
log(e_c) ·pe_c

◆

We multiply the scaled delta value with the sum of the scaled error rate and cluster
rate. The sum of error and cluster rate provides an initial factor size and gets scaled
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by the delta multiplication. The delta respects the upper bound for the error rate and
scales the initial factor down in case of a low upper bound to decrease less. We divide
by the product of the epoch counter’s root and logarithm to make smaller threshold
decreases with an increasing epoch length and reward less.

Case 4

Case 4 in Algorithm 2 implies that VectorQ wrongly reused the answer and we increase
the threshold.

delta e_r dt

e
�1(delta) r(e_r) d(dt)

We take the inverse of the delta because a large one should increase the threshold less
as we have room for errors. If the delta is small we encourage threshold increments
because we are about to exceed the error rates upper bound.

When the e_r is high, we can further increase the threshold for potentially better
accuracy. If the reuse rate is low, we want to avoid large increases that could further
reduce reuse efficiency.

A large dt implies that the threshold is far away from the cluster center and we were
not even close to rejecting the answer. Consequently, we use the large dt to increase the
threshold. A small dt implies that we were close to rejecting the reuse. Consequently,
we increase the threshold slightly.

f actor4 = e
�1(d, m_e) ·

✓
r(e_r, m_e) + d(dt)p

e_c

◆

We multiply the scaled delta value with the sum of the scaled error rate and cluster rate.
The sum of error and cluster rate provides an initial factor size and gets scaled by the
delta multiplication. The delta respects the upper bound for the error rate and scales
the initial factor down in case of a low upper bound to decrease less. We divide by the
root of the epoch counter e_c to make smaller threshold decreases with an increasing
epoch length.

Finally, we identified four factors that dynamically adjust the threshold according to
the specific characteristics of the existing data points.
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5.2.7 Algorithm

Each f actorx combines three parameters to adjust the current threshold value. To
ensure the threshold converges to the upper bound error rate and minimizes the impact
of outliers, we divide f actorx by the square root of epoch elements. Cases 2 and 3 are
reward cases and should change the threshold less. To minimize the impact of f actor2
and f actor3, we divide them by the logarithm and root product of epoch elements. We
set a lower and upper bound for the threshold to avoid divergence that goes out of
bounds for a normalized cosine similarity between 0.0 and 1.0.

Algorithm 2: Complete Dynamic Threshold Algorithm
Data : Direct Inference Answer d_a, VectorQ Answer v_a, Threshold t, Cosine

Similarity cs Between Current Embedding and Nearest Neighbor, Epoch
Error Rate e_e, Epoch Reuse Rate e_r, Epoch Cluster Rate dt, Epoch Count
e_c, User-Defined Maximum Error Rate m_e

Result : Threshold increase or decrease

1 d m_e� e_e

2 if d < 0 then

3 t
0  1.0

4 return t
0

5 end

6 if d_a == v_a then

7 if cs < t then

8 t
0  t� e(d, m_e) ·

⇣
r
�1(e_r,m_e)+d(dt)p

e_c

⌘

9 else

10 t
0  t� e(d, m_e) ·

⇣
r
�1(e_r,m_e)+d

�1(dt)
log(e_c)·pe_c

⌘

11 end

12 else

13 if cs < t then

14 t
0  t + e

�1(d, m_e) ·
⇣

r(e_r,m_e)+d
�1(dt)

log(e_c)·pe_c

⌘

15 else

16 t
0  t + e

�1(d, m_e) ·
⇣

r(e_r,m_e)+d(dt)p
e_c

⌘

17 end

18 end

19 return min(1.0, max(0.0, t
0))
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The dynamic threshold algorithm uses performance-based adjustments and epoch-
specific error rates to adapt to changes in prompt complexity, maintains reuse efficiency,
and aims for user-defined accuracy. The threshold does not guarantee the optimal
reuse rate but achieves a reliable error rate performance. In the next subsection, we
frame this approach as an Active Online Learning Problem to contextualize its design
within established paradigms.

5.2.8 An Active Online Learning Nearest Neighbor Classifier

We classify our dynamic threshold heuristic as an Active Online Learning Nearest
Neighbor Classifier to contextualize its design within established paradigms. First, we
define Active Learning, Online Learning, and Nearest Neighbor Classifiers.

Active Learning

According to Lindenbaum, Markovitch, and Rusakov (2004), Active Learning systems
do not have access to all labeled data at once; instead, they select a subset of incoming
samples to query for labels and aim to maximize accuracy with minimal labeled data.
The proposed dynamic threshold heuristic, reuses or generates new answers that mirror
the active selection of useful samples, similar to choosing the most confident and
valuable labels. VectorQ’s choice to reuse an answer based on the current threshold
resembles how an active learner prioritizes confident or informative data points, guided
by cosine similarity between embeddings. Furthermore, active learning systems balance
new data exploration (direct inference) with the exploitation of known information
(answer reuse). VectorQ’s dynamic heuristic manages this balance by actively deciding
when to reuse an existing answer and when to perform direct inference. Lindenbaum,
Markovitch, and Rusakov (2004) refers to a strong and expensive teacher that labels
the incoming data, whereas VectorQ utilizes the LLM’s ground truth response as its
teacher.

Online Learning

In online learning, data arrives sequentially in a streaming fashion, which requires the
model to continuously adapt to the new data points (Hoi, Sahoo, Lu, & Zhao, 2021).
Each decision to reuse or generate a new answer within the dynamic threshold heuristic
resembles an active selection of relevant samples. The threshold is updated in real-time
based on feedback on whether a reused answer was correct or incorrect. This allows
the model to adjust its behavior for future decisions by incrementally decreasing or
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increasing the threshold that the model’s continual learning from each incoming data
point.

Nearest Neighbor Classifier

The K-nearest neighbor classifier (KNN) is a multi-class classifier that assigns labels
based on the majority label of the k nearest points in a set (Jain & Kapoor, 2009). The
threshold heuristic leverages KNN to adjust the threshold by comparing the cosine
similarity between the query embedding and its nearest neighbors against the current
threshold. The cluster center (KNN median) guides the degree of adjustment by
discouraging large shifts in dense regions near the threshold, and vice versa.

5.3 Re-Clustering and Cache Eviction

Since VectorQ aims to process a high volume of queries while maintaining reasonable
accuracy, latency, and storage efficiency the vector database size can become a bottleneck.
A naive approach would populate embeddings until a capacity limit is reached and
evict based on standard cache policies like LRU, MRU, or LFU (Bang, 2023). However,
this method neither accounts for the accuracy or quality of stored embeddings nor
combines similar embeddings to reduce storage overhead. To address this, we propose
a performance-based re-clustering and eviction strategy to optimize the embeddings in
the vector database. Those strategies apply at every direct inference and the occasional
check. The following four cases represent scenarios where we add, update, or remove
embeddings from the vector database.

In the first case, the system performed a direct inference because the cosine similarity
between the current embedding and its nearest neighbor is below the threshold. No
close enough cluster exists and we create a new cluster. In the second case, the system
correctly reused the answer from VectorQ. Instead of creating a new cluster, which could
lead to cluster fragmentation, we merge the embeddings to combine the knowledge.

In the third case, the system made a direct inference because the cosine similarity
between the current embedding and its nearest neighbor is below the threshold. No
close enough cluster exists and we create a new cluster. In the fourth case, the system
reused an answer, but this answer is wrong because it deviates from the direct inference
result. We consider this suboptimal and remove the cluster.
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Algorithm 3: Re-Cluster and Cache Eviction
Data : Direct Inference Answer d_a, VectorQ Answer v_a, Threshold t, Cosine

Similarity cs Between Current Embedding ec and Nearest Neighbor en,
Vector Database V

Result : Updated Vector Database V

1 if d_a == v_a then

2 if cs < t then

3 V  V [ {ec} // Case 1: Create Cluster
4 else

5 c ec+en

2
6 V  V \ {en}
7 V  V [ {c} // Case 2: Merge Cluster
8 end

9 else

10 if cs < t then

11 V  V [ {ec} // Case 3: Create Cluster
12 else

13 V  V \ {en} // Case 4: Evict Cluster
14 end

15 end

16 return V

The following three sections explain why and how we implement the create, update,
and evict operations.

5.3.1 Create Cluster

In Cases 1 and 3 of Algorithm 3, direct inference generated a new answer which implies
that even the nearest embedding’s answer was not sufficiently similar for reuse. This
indicates that the nearest cluster does not represent the intended meaning, and requires
us to add the embedding to form a new cluster.

5.3.2 Update Existing Cluster

In Case 2 of Algorithm 3, VectorQ correctly reused the answer because the nearest
embedding sufficiently captures the meaning required by the current embedding
candidate. We merge the embeddings to capture their combined meaning. The cluster
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update is decomposed into three phases.

Phase 1) We treat all embeddings in the vector space as potential reuse candidates for
the incoming embedding, with each embedding mapped to its corresponding answer.

Figure 5.8: Phase 1) Simplified 2D vector space with two embeddings e1, e2 that form
two distinct clusters.

Phase 2) When a new embedding candidate arrives, we check if an existing embedding
is sufficiently close for the candidate to reuse its answer. If so, instead of keeping
both embeddings in the vector space, we compute their centroid by averaging the two
embeddings to capture the combined meaning. If no sufficiently close embedding
exists, we add the new candidate to the vector database.
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Figure 5.9: Phase 2) New embedding e3 arrives and conforms to e1’s cluster. Compute
centroid c.

Phase 3) We remove the nearest embedding and the reuse candidate from the vector
space, insert the centroid into the vector database, and map it to the answer associated
with the nearest embedding.

Figure 5.10: Phase 3) Remove embeddings e1 and e2, only keep centroid c, and map it
to e1’s answer.
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This ensures that we do not overpopulate the vector database with similar embeddings.

5.3.3 Evict Cluster

In Case 4 of Algorithm 3, a low threshold or an inaccurately formed cluster caused
VectorQ to wrongly reuse an answer. We can create a scenario where re-clustering
causes the embeddings to gradually shift toward a neighboring cluster. Eventually, the
propagated embedding gets so close to this neighboring cluster that it incorrectly maps
to the neighboring cluster’s answer instead of its intended answer.

Figure 5.11: Through multiple cluster updates, the centroid moves from its initial
position c1 to c5, where c5 now aligns with the cluster of e2 and incorrectly
changes its mapping from ’Yes’ to ’No’.

In such a scenario, we remove the propagated embedding to eliminate the incorrect
mapping.
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Figure 5.12: When we detect incorrect reuse, as in the case of c5, we remove this
embedding to eliminate the inaccurate mapping.

To conclude, VectorQ enhances state-of-the-art semantic prompt caches with a dynamic
cosine similarity threshold and optimized vector database clusters through re-clustering
and a performance-based cache eviction policy.
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VectorQ is an end-to-end semantic prompt caching solution implemented as a stan-
dalone, dockerized server featuring dynamic thresholding and performance-based clus-
tering. The system is developed in 1.6k lines of Python code, supports the HNSWLIB
vector database (Malkov & Yashunin, 2018), integrates six different embedding models,
and can extend to any API-accessible inference server with minimal effort—requiring
only 15 lines of Python code. The current version includes support for OpenAI and
Ollama inference servers. VectorQ leverages Flask (Armin Ronacher, 2024) to facilitate
communication between the client, vector database, and inference server.

6.1 Multiple User Resource Management

VectorQ is designed to support multi-user environments and concurrent requests effi-
ciently. To ensure resource management and prevent data conflicts, the system employs
a session-based architecture comprising client and question sessions. Each client ini-
tiates a dedicated client session, which encapsulates an isolated vector database to
prevent data leakage across users. For every new task, a question session is established
to monitor task-specific performance metrics, including epoch-specific error rates, reuse
rates, and the dynamically adjusted threshold. To optimize resource usage, an observer
thread identifies and removes inactive client and question sessions. All users share a
unified model cache to optimize the utilization of the shared GPU architecture. The
model cache ensures that a model is not redundantly loaded onto the GPU when
multiple clients use the same model. An observer thread tracks the number of active
clients using each loaded model and unloads it from the GPU when no client utilizes it.
This approach ensures efficient use of the limited GPU memory resource.

6.2 UML Architecture

The following UML diagram illustrates the key components of VectorQ introduced in
the preceding section.
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Figure 6.1: VectorQ UML Diagram.

The current implementation stores cached answers associated with vector embeddings
in an in-memory map. This design provides fast retrieval but introduces limitations in
data persistence. Specifically, if the VectorQ server experiences an outage, all cached
data is lost, impacting reliability for long-running or mission-critical tasks. To address
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this, future iterations of VectorQ will integrate a distributed storage system to enable
persistent and fault-tolerant caching to mitigate the risk of data loss during server
downtime. The planned distributed architecture will improve scalability by accommo-
dating larger datasets and supporting more simultaneous user sessions. VectorQ will
be made open source following its publication in spring 2025.
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In this section, we evaluate the performance of VectorQ under a variety of workloads.
We compare VectorQ against direct inference and the state-of-the-art semantic prompt
cache GPT Cache.

Server and Model Configuration. For all of our experiments, we use an N1 GCP
instance with one f1-micro CPU and one NVIDIA T4 GPU to host the VectorQ server
and inference server. The T4 has 16 GB GPU memory and processes 65 TFLOPS with
mixed precision (FP16/FP32). We use the lightweight LLaMA-3.1-8B model (Touvron,
Lavril, Izacard, et al., 2023), hosted on our GCP instance with an Ollama (Morgan &
Chiang, 2023) inference server. For all experiments, we generate vector embeddings
using the lightweight model gte-large-en-v1.5 (X. Zhang, Zhang, Long, et al., 2024) and
store them in the HNSWLIB vector database (Malkov & Yashunin, 2018).

Datasets. Semantic prompt caching requires the dataset to consist of clusters where
the rows in each cluster map to the same answer. If all rows have distinct answers,
it is impossible to reuse them. We identified three task categories that satisfy this
requirement.

• Classification Classification tasks often involve mapping a variable amount of input
data to a finite set of predefined categories. For this experiment, we use the
E-Commerce Text Classification dataset (Saurabh Shahane, 2023), which assigns
product descriptions to one of four categories: Books, Electronics, Household,
and Clothing & Accessories. To ensure a balanced representation, we shuffle
the dataset to distribute all categories evenly. The prompt for classification is
structured as follows: "Which category does the text belong to? Answer with
’Books’, ’Electronics’, ’Household’, or ’Clothing & Accessories’ only." The specific
product description is then appended to the end of the prompt. Additionally, we
use the CommonsenseQA (Talmor, Herzig, Lourie, & Berant, 2018) dataset, which
assigns questions to question categories. To ensure a balanced representation, we
shuffle the dataset to distribute all categories evenly. The prompt is structured
as follows: "What is the main subject of the following question? Answer with
only one of the words of this set: ["people", "small dog", "cat", "car", "children",
"weasel", "water", "doing homework", "human", "shark", "chatting with friends",

39



7 Evaluation

"student", "bald eagle", "fox", "food", "snake", "ficus", "potato", "driving car",
"monkey", "animals", "apple tree", "horse", "crab", "lizard", "person", "getting
drunk", "competing", "killing"]".

• User Prompts To simulate chatbot behavior, we use the ComQA dataset (Rogers,
Gardner, & Augenstein, 2023) and modify it after the evaluation methodology
employed by GPT Cache. The dataset includes a set of semantically distinct user
questions; for each, we generate a corresponding semantically similar question
using GPT-4o-mini. The evaluation involves two phases: first, we process the
distinct questions and expect no reuse due to their uniqueness; second, we process
the semantically similar questions and expect all of them to be reused. This setup
tests the cache’s ability to effectively identify and handle semantic similarity. Each
prompt consists solely of the user-provided question.

• Sentiment Sentiment classification maps a variable amount of input data to a finite
set of possible sentiments. While NLP-based methods, such as those proposed by
(Dang, Moreno-García, & De la Prieta, 2020), outperform LLM-based sentiment
analysis in terms of latency, this remains a relevant scenario, as sentiment analysis
is used in semantic prompt caches within Retrieval-Augmented Generation (RAG)
systems (B. Zhang, Yang, Zhou, et al., 2023). For this experiment, we use the
Amazon Instant Video Review dataset (Ni, Li, & McAuley, 2019) and prompt the
question: "Is this review friendly?". To ensure unbiased results, we shuffle the
dataset to create an even distribution of friendly and unfriendly reviews.

Key Metrics. We evaluate each dataset based on latency, error, and reuse rates. Latency
measures the time taken to process a single request. The error rate is calculated
exclusively for reused answers and determined by a one-to-one equality comparison
with the ground truth derived from the direct inference LLM output. We avoid using
LLMs or vector embeddings for equality comparisons, as employed in GPT Cache
benchmarks (Bang, 2023), to ensure more precise and reliable accuracy results. The
reuse rate represents the proportion of rows with reused answers and is equivalent to
the cache hit rate, as every reused answer is retrieved from the vector database cache.

7.1 Baseline 1: Direct Inference

We evaluate VectorQ’s performance by comparing it with direct inference to an Ollama
inference server to demonstrate the possible latency improvements of semantic prompt
caching and the reliability of our dynamic threshold.

40



7 Evaluation

7.1.1 Accuracy

This benchmark evaluates the accuracy of the dynamic threshold as it converges to
the user-defined error rate. To test error rate conservative and optimistic scenarios, we
simulate error rates of 3%, 6%, 9%, 12%, and 15%.

E-Commerce Dataset

The following graph visualizes the error rate accuracy with the E-Commerce dataset.

Figure 7.1: Dynamic threshold convergence performance with five different user-
defined error rates for the E-Commerce dataset.

VectorQ achieves the target error rates for 3%, 9%, 12%, and 15%, but the 6% error rate
shows variability due to limitations in how the dynamic threshold algorithm computes
epochs. The epoch-based error rate resets the threshold when the user-defined error rate
is exceeded. However, the algorithm relies on five-step intervals to perform periodic
checks, determining whether reused answers are correct. In worst-case scenarios,
incorrect reuses may occur in the first four steps, followed by correct reuse in the fifth
step, resulting in an epoch error rate of zero percent despite 80% of the answers being
incorrect. This discrepancy prevents the threshold from being adjusted appropriately,
leading to further errors without recovery. We note that this issue is not unique to
the dynamic threshold; a static threshold faces the same challenge and would require
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continuous manual monitoring and adjustment to maintain performance and prevent
such scenarios. Section 7.3 discusses this issue in greater detail and proposes solutions
to address it in future work.

CommonsenseQA Dataset

The following graph visualizes the error rate accuracy with the CommonsenseQA
dataset.

Figure 7.2: Dynamic threshold convergence performance with five different user-
defined error rates for the CommonsenseQA dataset.

While the error rate targets are achieved, we observe fluctuations for the initial 150
samples. These fluctuations result from the dynamic threshold adjustment process
and the pre-defined step size of five samples, which impacts the accuracy of the error
rate approximation. In the early stages, when the sample size is small, the error rate
approximation is less reliable, leading to higher variability and increased errors. To
mitigate such fluctuations, users can configure a pre-fill phase, during which reuse is
temporarily disabled, allowing the algorithm to adjust the threshold more effectively
before reuse begins. The next section compares VectorQ with the state-of-the-art
semantic prompt cache GPT Cache to measure the impact of a dynamic threshold.
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Amazon Instant Video Dataset

The following graph visualizes the error rate accuracy with the Amazon Instant Video
Review dataset.

Figure 7.3: Dynamic threshold convergence performance with five different user-
defined error rates for the Amazon Instant Video Review dataset.

VectorQ maintains target error rates for 3%, 6%, 9%, and 12%, but the 15% error
rate shows underperformance as it could allow for higher error rates. The dynamic
threshold is designed to optimize reuse rates; however, as observed in the classification
dataset benchmark in section 7.1.1, the epoch error and reuse rates are only estimated
in five-step intervals. If reuse occurs only in the fifth sample of a given interval, the
system predicts a reuse rate of 100%, even though no reuse occurred in the previous
four samples.

7.1.2 Summary

The following table outlines the performance benchmarks given the 6% and 12%
user-defined error rates for all three datasets.

43



7 Evaluation

Dataset User E_R Method Avg. Latency (sec) Duration (min) R_R Real E_R

E-Commerce
6% Direct I. 0.41 6.80 0.00 0.00

VectorQ 0.31 5.21 48.4 6.81

12% Direct I. 0.41 6.80 0.00 0.00
VectorQ 0.26 4.43 56.4 11.2

CommonsenseQA

6% Direct I. 0.34 5.79 0.00 0.00
VectorQ 0.32 5.51 7.50 4.93

12% Direct I. 0.34 5.79 0.00 0.00
VectorQ 0.29 4.90 18.1 10.9

Amazon Review
6% Direct I. 0.29 4.83 0.00 0.00

VectorQ 0.25 4.20 38.5 5.71

12% Direct I. 0.29 4.83 0.00 0.00
VectorQ 0.16 2.73 72.9 12.3

Table 7.1: Direct Inference and VectorQ: Average latency, duration, reuse rate (R_R),
and real error rate (RealE_R) comparison using LLaMa 3.1-8B over three
datasets, 1000 samples, and user-defined target error rates of 6% and 12%.

VectorQ achieves up to 2x latency improvement for a sample size of 1000 rows, de-
pending on the dataset and user-defined error rate. This improvement is expected to
grow with larger sample sizes, as the likelihood of semantically similar rows increases,
leading to higher reuse rates. However, the relative latency of VectorQ is influenced by
the output length of the LLM for a given prompt. For example, the CommonsenseQA
dataset has an average LLM output length of 86 words, while the prompts for the other
two datasets typically return one or two words. As a result, despite lower reuse rates
for CommonsenseQA, the latency difference between direct inference and VectorQ
remains comparable due to the higher inference time for longer outputs.

7.2 Baseline 2: GPT Cache

We compare VectorQ with state-of-the-art semantic prompt cache GPT Cache to evaluate
the impact of a dynamic threshold over an optimal static threshold. We configure
VectorQ and GPT Cache with the same embedding model and vector database as
described at the beginning of chapter 7.

7.2.1 Average Case

The average case assumes a balanced dataset with semantically similar prompts, where
a static threshold performs comparably to a dynamic threshold. Our benchmarks show
that, despite performing a direct inference every fifth step, VectorQ remains competitive
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in terms of latency. We evaluated each dataset with 200 rows for each threshold value
between 0.6 and 1.0 in 0.01 increments to determine the optimal static threshold. For
each error rate, we selected the lowest threshold that satisfied the target error rate. This
setup ensures that both VectorQ and GPT Cache operate at comparable error rates, to
enable an isolated latency comparison.

Classification Dataset

The graph illustrates the latency performance across six error rates, ranging from 2% to
15%. Each threshold value t represents the lowest possible static threshold required to
achieve the corresponding error rate e_r.

Figure 7.4: VectorQ and GPT Cache latency comparison across six threshold values and
similar error rate performances with the E-Commerce dataset.

VectorQ achieves comparable latency performance while eliminating the manual effort
to determine the optimal threshold for a specific set of prompts.

Sentiment Dataset

The graph illustrates the latency performance across six different error rates, ranging
from 2% to 15%. Each threshold value t represents the lowest possible static threshold
required to achieve the corresponding error rate e_r.
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Figure 7.5: VectorQ and GPT Cache latency comparison across six threshold values and
similar error rate performances with the Amazon Instant Video dataset.

VectorQ achieves comparable latency performance while eliminating the manual effort
to determine the optimal threshold for a specific set of prompts.

7.2.2 Worst Case

Workloads with varying levels of complexity require different threshold values to
achieve consistent performance. A significant limitation of static thresholds arises
when workloads shift in difficulty, as might occur in a chatbot scenario where users ask
questions of differing lengths and complexities. This benchmark simulates this behavior
in four phases and uses three different datasets: the Amazon Instant Video dataset
(Easy), the ComQA question dataset (Difficult), and the e-commerce classification
dataset (Easy). As demonstrated in Section 7.2.2, each dataset requires a different
threshold to maintain the same accuracy rate. We classify a dataset as easy if it requires
a lower threshold compared to another dataset, which we classify as difficult. We use
the pre-determined optimal static threshold for the first dataset to achieve a 10% error
rate and process 500 samples of each of the remaining datasets.
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Figure 7.6: VectorQ and GPT Cache worst case error rate performance with varying
workload complexities. Dataset 1: Amazon Instant Video, Dataset 2,4:
ComQA, Dataset 3: E-Commerce Classification.

The results reveal that the static threshold performs well for the first dataset and third
datasets which are both of similar difficulty and require a similar threshold. When the
difficult dataset gets processed, the static threshold is insufficiently low and produces a
9x higher error rate compared to VectorQ. The dynamic threshold adapts to the varying
complexities and maintains a relatively more stable accuracy.

7.3 Limitations

The proposed dynamic threshold offers improvements over static thresholds but re-
mains limited by its global nature. This limitation arises from the assumption that all
embedding clusters have uniform threshold requirements, which is not always the case.
Some embedding clusters may be well-represented by their embeddings, requiring
lower thresholds for accurate reuse. In contrast, clusters characterized by densely
packed or semantically similar embeddings often require higher thresholds to avoid
inaccuracies.
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Figure 7.7: Simplified 2D vector space. Each point represents one embedding where
embeddings with the same color share the same answer. Densely packed
clusters like the one in the bottom right require higher thresholds to differ-
entiate their answers.

Figure 7.7 depicts a simplified 2D vector space where each point represents an embed-
ding, and embeddings of the same color correspond to the same answer. The clusters
exhibit varying distance characteristics, necessitating different thresholds. For example,
the green, blue, and orange clusters are closely spaced, requiring higher thresholds to
avoid incorrect reuse, whereas the purple cluster is more distinct, allowing for a lower
threshold. When embeddings from these varying clusters are processed sequentially,
a single global threshold can become problematic. It may be overly restrictive for
simpler clusters, limiting reuse, or insufficiently restrictive for more complex clusters,
increasing errors. Although the dynamic threshold adapts over time, it fails to capture
localized variations that arise within short processing intervals, leading to suboptimal
performance in such scenarios.
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Figure 7.8: Prompts with varying complexity at a one-step interval demand dynamically
adjusted thresholds.

Figure 7.8 illustrates a scenario where prompts of varying complexity are processed
at one-step intervals. Complex prompts demand a high threshold of 0.9, whereas
simpler prompts only require a threshold of 0.6. A single global threshold fails to adapt
effectively to these rapid fluctuations. Future research will focus on implementing
localized thresholds, where each cluster maintains its threshold value. This approach
would leverage metadata from the nearest retrieved embedding to dynamically apply a
cluster-specific threshold, enabling finer-grained and context-sensitive optimizations.

The choice of embedding model is critical, as it determines how effectively the query is
represented in a compressed vector format. If the embedding model is trained on a
use case that differs from the context of the prompts, it may fail to capture the relevant
semantics required for accurate reuse. For instance, many embedding models are
trained in a specific language and struggle to interpret prompts in other languages. To
address this limitation, we propose two approaches. First, users of semantic prompt
caches should leverage their domain expertise to select an embedding model that
aligns with their specific application context. Second, automatic model fine-tuning, as
proposed by (Zeighami, Wellmer, & Parameswaran, 2024) or (Zhu, Zhu, & Jiao, 2024),
can be employed to adapt the model to the desired domain.
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8 Conclusion

This thesis introduces dynamic thresholds and performance-based re-clustering as
advancements to state-of-the-art semantic prompt caching systems. Unlike static thresh-
olds, the dynamic threshold adapts based on real-time performance and eliminates
the need for manual threshold selection. Performance-based re-clustering optimizes
cache accuracy by combining and evicting embeddings based on their accuracy rather
than their frequency of use. Our implementation, VectorQ, demonstrates a 9x improve-
ment in accuracy compared to existing semantic prompt caches while maintaining
comparable latency. However, both static and dynamic thresholds face limitations
in workloads that require rapid threshold adjustments over short intervals. Future
research will explore embedding location-based thresholds rather than relying on a
global threshold. We will combine Bayesian Inference with Vector Space projection
to create cluster-specific thresholds that better accommodate variations in prompt
complexity.
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